Advertisements
Advertisements
Question
Solution
\[\text{Let, }I = \int_0^\frac{\pi}{2} \log \tan x\ dx ...................(1)\]
\[ = \int_0^\frac{\pi}{2} \log \tan\left( \frac{\pi}{2} - x \right) dx ....................\left[ Using, \int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \log cot x\ dx ....................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \log \tan x d x + \int_0^\frac{\pi}{2} \log cotx\ dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \tan x \times cotx \right)dx\]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[\text{Hence, }I = 0\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`