English

Π / 2 ∫ 0 Log Tan X D X . - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]
Sum

Solution

\[\text{Let, }I = \int_0^\frac{\pi}{2} \log \tan x\ dx ...................(1)\]

\[ = \int_0^\frac{\pi}{2} \log \tan\left( \frac{\pi}{2} - x \right) dx ....................\left[ Using, \int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]

\[ = \int_0^\frac{\pi}{2} \log cot x\ dx ....................(2)\]

\[\text{Adding (1) and (2) we get}\]

\[2I = \int_0^\frac{\pi}{2} \log \tan x d x + \int_0^\frac{\pi}{2} \log cotx\ dx\]

\[ = \int_0^\frac{\pi}{2} \log\left( \tan x \times cotx \right)dx\]

\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]

\[\text{Hence, }I = 0\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Very Short Answers [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Very Short Answers | Q 14 | Page 115

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×