Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_1^3 \frac{\log x}{\left( 1 + x \right)^2} d\ x\ . Then, \]
\[I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 - \int_1^3 \frac{1}{x}\left( \frac{- 1}{x + 1} \right) d x\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \int_1^3 \frac{1}{x\left( x + 1 \right)} dx\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \int_1^3 \left( \frac{1}{x} - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \left[ \log x - \log \left( x + 1 \right) \right]_1^3 \]
\[ \Rightarrow I = \frac{- 1}{4} \log 3 + \log 3 - \log 4 + \log 2\]
\[ \Rightarrow I = \frac{3}{4} \log 3 - \log 2\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
Evaluate the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`