English

∫ 1 Log X ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

Solution

\[Let\ I = \int_1^3 \frac{\log x}{\left( 1 + x \right)^2} d\ x\ . Then, \]
\[I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 - \int_1^3 \frac{1}{x}\left( \frac{- 1}{x + 1} \right) d x\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \int_1^3 \frac{1}{x\left( x + 1 \right)} dx\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \int_1^3 \left( \frac{1}{x} - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow I = \left[ \frac{- 1}{1 + x} \log x \right]_1^3 + \left[ \log x - \log \left( x + 1 \right) \right]_1^3 \]
\[ \Rightarrow I = \frac{- 1}{4} \log 3 + \log 3 - \log 4 + \log 2\]
\[ \Rightarrow I = \frac{3}{4} \log 3 - \log 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 33 | Page 17

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int_0^1 | x\sin \pi x | dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×