Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan x + \cot x \right)^2 d x . Then, \]
\[I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \cot x \right]_\frac{\pi}{3}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - 1 \right) - \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right)\]
\[ \Rightarrow I = \frac{- 2}{\sqrt{3}}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(2a − x) = −f(x), prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`