English

Π / 4 ∫ π / 3 ( Tan X + Cot X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

Solution

\[Let\ I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan x + \cot x \right)^2 d x . Then, \]
\[I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \cot x \right]_\frac{\pi}{3}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - 1 \right) - \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right)\]
\[ \Rightarrow I = \frac{- 2}{\sqrt{3}}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 21 | Page 16

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×