Advertisements
Advertisements
Question
Find : `∫_a^b logx/x` dx
Sum
Solution
Put `log x = t ⇒ 1/x dx = dt`
⇒ `x = a ⇒ t = loga & x = b ⇒ t = log b`
`therefore I = ∫_log a ^log b t dt`
= `t^2/2|_log a^log b`
= `1/2 [(log b)^2 - (log a)^2]`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]
\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]
\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]
\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]
\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]
\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]
\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]
\[\int\limits_a^b x\ dx\]
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]
\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]
\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\] is equal to
\[\int\limits_0^{\pi/2} x \sin x\ dx\] is equal to
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`