Advertisements
Advertisements
Question
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Solution
I = `int (x^2 + 2)/(x + 1) "d"x`
= `int (x^2 - 1 + 3)/(x + 1) "d"x`
= `int ((x - 1)(x + 1) + 3)/(x + 1) "d"x`
= `int (x - 1 + 3/(x + 1)) "d"x`
= `int (x - 1) "d"x + 3int 1/(x + 1) "d"x`
= `x^2/2 - x + 3 log |(x + 1)| + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.