Advertisements
Advertisements
Question
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Options
`int_"a"^"b" f(x) "d"x - int_"a"^"c" f(x) "d"x`
`int_"a"^"c" f(x) "d"x - int_"a"^"b" f(x) "d"x`
`int_"a"^"b" f(x) "d"x`
0
MCQ
Solution
`int_"a"^"b" f(x) "d"x`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]
\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]
\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]
\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]
Evaluate the following integral:
\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]
Evaluate each of the following integral:
\[\int_0^1 x e^{x^2} dx\]
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.