Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[I = \int_{- 3}^3 \left| x + 1 \right| d x\]
\[We\ know\ that, \left| x + 1 \right| = \begin{cases} - \left( x + 1 \right) &, &- 3 \leq x \leq - 1 \\x + 1 &, &- 1 < x \leq 3\end{cases}\]
\[ \therefore I = \int_{- 3}^{- 1} - \left( x + 1 \right) d x + \int_{- 1}^3 \left[ x + 1 \right] d x\]
\[ \Rightarrow I = \left[ - \frac{\left( x + 1 \right)^2}{2} \right]_{- 3}^{- 1} + \left[ \frac{\left( x + 1 \right)^2}{2} \right]_{- 1}^3 \]
\[ \Rightarrow I = 0 + 2 + 8 - 0\]
\[ \Rightarrow I = 10\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int x^3/(x + 1)` is equal to ______.