Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\int_{- 4}^4 \left| x + 2 \right| d x\]
\[We\ know\ that\, \left| x + 2 \right| = \begin{cases} - \left( x + 2 \right) &, &- 4 \leq x \leq - 2 \\x + 2 &, &- 2 < x \leq 4\end{cases}\]
\[ \therefore I = \int_{- 4}^4 \left| x + 2 \right| d x\]
\[ \Rightarrow I = \int_{- 4}^{- 2} - \left( x + 2 \right) d x + \int_{- 2}^4 \left( x + 2 \right) d x\]
\[ \Rightarrow I = \left[ - \frac{x^2}{2} - 2x \right]_{- 4}^{- 2} + \left[ \frac{x^2}{2} + 2x \right]_{- 2}^4 \]
\[ \Rightarrow I = - 2 + 4 - 8 - 8 + 8 + 8 - 2 + 4\]
\[ \Rightarrow I = 20\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.