English

Evaluate the Following Integral: ∫ − π 2 − 3 π 2 { Sin 2 ( 3 π + X ) + ( π + X ) 3 } D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]
Sum

Solution

\[\text{Let I} = \int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Put

\[\pi + x = z\]
\[\Rightarrow dx = dz\]

When

\[x \to - \frac{3\pi}{2}, z \to - \frac{\pi}{2}\]

When

\[x \to - \frac{\pi}{2}, z \to \frac{\pi}{2}\]

\[\therefore I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left[ \sin^2 \left( 2\pi + z \right) + z^3 \right]dz\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 z + z^3 \right)dz ................\left[ \sin\left( 2\pi + \theta \right) = \sin\theta \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1 - \cos2z}{2}dz + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} z^3 dz\]

\[= \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dz - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2zdz + \int_{- \frac{\pi}{2}}^\frac{\pi}{2} z^3 dz\]
\[ = \frac{1}{2} \times z_{- \frac{\pi}{2}}^\frac{\pi}{2} - \left.\frac{1}{2} \times \frac{\sin2z}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} +\left. \frac{z^4}{4}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] - \frac{1}{4}\left[\sin\pi - \sin\left( - \pi \right) \right] + \frac{1}{4}\left( \frac{\pi^4}{16} - \frac{\pi^4}{16} \right)\]

\[= \frac{1}{2} \times \pi - \frac{1}{4}\left( 0 + 0 \right) + \frac{1}{4} \times 0\]
\[ = \frac{\pi}{2}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 32 | Page 95

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×