Advertisements
Advertisements
Question
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Options
6
0
3
4
Solution
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is 6.
Explanation:
Put `x = cos theta`
`dx = cos theta d theta`
`therefore int (x - x^3)^(1/3)/x^4 dx`
`= int ((sin theta - sin^3 theta)^(1/3))/(sin^4 theta) cos theta . d theta`
`= int (sin^(1/3) theta (1 - sin^2 theta)^(1/3))/(sin^4 theta) cos theta . d theta`
`= int (sin^(1/3) theta cos^(2/3) theta . cos theta)/(sin^2 theta sin^2 theta)`
`= int (cos^(5/3) theta)/(sin^(5/3) theta) cosec^2 theta d theta`
`= int cot^(5/3) theta cosec^2 theta d theta`
Again, on substituting `cot theta = t`
`-cosec^2 theta "d" theta = dt`
`int (x - x^3)^(1/3)/x^4 = - int t^(5/3) dt = (-3)/8 t^(8/3)`
`= (-3)/8 (cot theta)^(8/5)`
` = (-3)/8 ((cos theta)/(sin theta))^(8/3)`
`= (-3)/8 ((sqrt(1 - sin^2 theta))/sin theta)^(8/3)`
`= (-3)/8 [(sqrt(1 - x^2))/x]^(8/3) ...[because sin theta = x]`
`therefore int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx = (-3)/8 [((sqrt(1 - x^2))/x)^(8/3)]_(1/3)^1`
`=(-3)/8 [0 - ((sqrt(1 - 1/9))/(1/8))^(8/3)]`
`= 3/8 [((sqrt8)/3)/(1/3)]^(8/3) = 3/8 . (8^(1/2))^(8/3)`
`= 3/8 . 8^(8/6) = 3/8 * 2^(3 xx 8/6)`
`= 3/8 xx 2^4`
`= 3/8 xx 16`
= 6
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`