English

The value of the integral ∫134(x-x3)13x4 dx is ______. - Mathematics

Advertisements
Advertisements

Question

The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.

Options

  • 6

  • 0

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is 6.

Explanation:

Put `x = cos theta` 

`dx = cos theta  d theta`

`therefore int (x - x^3)^(1/3)/x^4  dx`

`= int ((sin theta - sin^3 theta)^(1/3))/(sin^4 theta)  cos theta  . d theta`

`= int (sin^(1/3) theta (1 - sin^2  theta)^(1/3))/(sin^4 theta)  cos theta . d theta`

`= int (sin^(1/3) theta cos^(2/3) theta . cos theta)/(sin^2 theta sin^2 theta)`

`= int (cos^(5/3) theta)/(sin^(5/3) theta)  cosec^2 theta  d theta`

`= int cot^(5/3)  theta cosec^2  theta  d theta`

Again, on substituting `cot theta = t`

`-cosec^2 theta  "d" theta = dt`

`int (x - x^3)^(1/3)/x^4 = - int t^(5/3)  dt = (-3)/8  t^(8/3)`

`= (-3)/8  (cot theta)^(8/5)`

` = (-3)/8 ((cos theta)/(sin theta))^(8/3)`

`= (-3)/8 ((sqrt(1 - sin^2 theta))/sin theta)^(8/3)`

`= (-3)/8 [(sqrt(1 - x^2))/x]^(8/3)    ...[because sin theta = x]`

`therefore int_(1/3)^1 (x - x^3)^(1/3)/x^4  dx = (-3)/8 [((sqrt(1 - x^2))/x)^(8/3)]_(1/3)^1`

`=(-3)/8 [0 - ((sqrt(1 - 1/9))/(1/8))^(8/3)]`

`= 3/8 [((sqrt8)/3)/(1/3)]^(8/3) = 3/8 . (8^(1/2))^(8/3)`

`= 3/8 . 8^(8/6) = 3/8 * 2^(3 xx 8/6)`

`= 3/8 xx 2^4`

`= 3/8 xx 16`

= 6

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.10 [Page 340]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.10 | Q 9 | Page 340

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×