Advertisements
Advertisements
Question
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Solution
`int(1+logx)/(x(2+logx)(3+logx))dx`
Substitute logx = t..................(1)
`therefore 1/xdx=dt`
Hence, the integral becomes
`int(1+t)/((2+t)(3+t))dt`
`=int(2+t-1)/((2+t)(3+t))dt`
`=int(2+t)/((2+t)(3+t))dt-int1/((2+t)(3+t))dt`
`=int1/(3+t)dt-int((t+3)-(t+2))/((2+t)(3+t))dt`
`=int1/(3+t)dt-[int(t+3)/((2+t)(3+t))dt-int(t+2)/((2+t)(3+t))dt]`
`=int1/(3+t)dt-int1/(2+t)dt+int1/(3+t)dt`
`=2int1/(3+t)dt-int1/(2+t)dt`
`=2int1/(3+t)dt-int1/(2+t)dt`
Substituting the value of 't' from (1), we get
`int(1+logx)/(x(2+logx)(3+logx))dx`
`2ln (3+ logx )-ln( 2+ logx)+ C`
`=log|(3+logx)^2/(2 + logx)| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.