English

Evaluate : ∫(1+logx)/(x(2+logx)(3+logx))dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`

Solution

`int(1+logx)/(x(2+logx)(3+logx))dx`

Substitute logx = t..................(1)

`therefore 1/xdx=dt`

Hence, the integral becomes

`int(1+t)/((2+t)(3+t))dt`

`=int(2+t-1)/((2+t)(3+t))dt`

`=int(2+t)/((2+t)(3+t))dt-int1/((2+t)(3+t))dt`

`=int1/(3+t)dt-int((t+3)-(t+2))/((2+t)(3+t))dt`

`=int1/(3+t)dt-[int(t+3)/((2+t)(3+t))dt-int(t+2)/((2+t)(3+t))dt]`

`=int1/(3+t)dt-int1/(2+t)dt+int1/(3+t)dt`

`=2int1/(3+t)dt-int1/(2+t)dt`

`=2int1/(3+t)dt-int1/(2+t)dt`

Substituting the value of 't' from (1), we get

`int(1+logx)/(x(2+logx)(3+logx))dx`

`2ln (3+ logx )-ln( 2+ logx)+ C`

`=log|(3+logx)^2/(2 + logx)| + C`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×