English

Evaluate Each of the Following Integral: ∫ π 2 − π 2 Cos 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

Question

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]
Sum

Solution

\[\text{Let I} =\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx.................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}{1 + e^\left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}dx ........................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{e^x \cos^2 x}{e^x + 1}dx .................... \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos^2 x}{1 + e^x} + \frac{e^x \cos^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x\left( 1 + e^x \right)}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 + \cos2x}{2} \right)dx\]

\[\Rightarrow 2I = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2xdx\]
\[ \Rightarrow 2I = \left.\frac{1}{2} \times x\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{2} \left.\times \frac{\sin2x}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] + \frac{1}{4}\left[ \sin\pi - \sin\left( - \pi \right) \right]\]
\[ \Rightarrow 2I = \frac{1}{2} \times \pi + \frac{1}{4}\left( 0 + 0 \right) .....................\left[ \sin\left( - \pi \right) = - sin\pi = 0 \right]\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.4 | Q 8 | Page 61

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×