Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\text{Let I} =\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx.................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}{1 + e^\left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}dx ........................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{e^x \cos^2 x}{e^x + 1}dx .................... \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos^2 x}{1 + e^x} + \frac{e^x \cos^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x\left( 1 + e^x \right)}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 + \cos2x}{2} \right)dx\]
\[\Rightarrow 2I = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2xdx\]
\[ \Rightarrow 2I = \left.\frac{1}{2} \times x\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{2} \left.\times \frac{\sin2x}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] + \frac{1}{4}\left[ \sin\pi - \sin\left( - \pi \right) \right]\]
\[ \Rightarrow 2I = \frac{1}{2} \times \pi + \frac{1}{4}\left( 0 + 0 \right) .....................\left[ \sin\left( - \pi \right) = - sin\pi = 0 \right]\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is