Advertisements
Advertisements
Question
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Solution
Let \[I = \int\limits_{- 2}^1 \left| x^3 - x \right|dx \text { and } f\left( x \right) = x^3 - x\]
Clearly,
\[f\left( x \right) = x^3 - x = x\left( x - 1 \right)\left( x + 1 \right)\]
The signs of f(x) for different values of x are shown in the figure below.
We observe that:
\[f\left( x \right) > 0\text { for all }x \in \left( - 1, 0 \right) \text { and } , f\left( x \right) < 0 \text { for all } x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)\]
\[\left| f\left( x \right) \right| = \binom{f\left( x \right), x \in \left( - 1, 0 \right)}{ - f\left( x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]
\[ \Rightarrow \left| x^3 - x \right| = \binom{ x^3 - x, x \in \left( - 1, 0 \right)}{ - \left( x^3 - x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]
\[ \Rightarrow I = \int_{- 2}^{- 1} \left| x^3 - x \right|dx + \int_{- 1}^0 \left| x^3 - x \right|dx + \int_0^1 \left| x^3 - x \right|dx\]
\[\Rightarrow I = \int_{- 2}^{- 1} - \left( x^3 - x \right)dx + \int_{- 1}^0 \left( x^3 - x \right)dx + \int_0^1 - \left( x^3 - x \right)dx\]
\[ \Rightarrow I = \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{- 1}^0 + \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_0^1 \]
\[ \Rightarrow I = \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - \left( - \frac{16}{4} + \frac{4}{2} \right) \right] + \left[ 0 - \left( \frac{1}{4} - \frac{1}{2} \right) \right] + \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - 0 \right]\]
\[ \Rightarrow I = \left[ \frac{1}{4} + 2 \right] + \left[ 0 + \frac{1}{4} \right] + \left[ \frac{1}{4} - 0 \right]\]
\[ \Rightarrow I = \frac{11}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is