English

\[\Int\Limits_{- 2}^1 \Left| X^3 - X \Right|Dx\] - Mathematics

Advertisements
Advertisements

Question

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .

Solution

Let \[I = \int\limits_{- 2}^1 \left| x^3 - x \right|dx \text { and } f\left( x \right) = x^3 - x\]

Clearly,

\[f\left( x \right) = x^3 - x = x\left( x - 1 \right)\left( x + 1 \right)\]

The signs of f(x) for different values of x are shown in the figure below.
We observe that:

\[f\left( x \right) > 0\text { for all }x \in \left( - 1, 0 \right) \text { and } , f\left( x \right) < 0 \text { for all } x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)\]

\[\left| f\left( x \right) \right| = \binom{f\left( x \right), x \in \left( - 1, 0 \right)}{ - f\left( x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]

\[ \Rightarrow \left| x^3 - x \right| = \binom{ x^3 - x, x \in \left( - 1, 0 \right)}{ - \left( x^3 - x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]

\[ \Rightarrow I = \int_{- 2}^{- 1} \left| x^3 - x \right|dx + \int_{- 1}^0 \left| x^3 - x \right|dx + \int_0^1 \left| x^3 - x \right|dx\]

\[\Rightarrow I = \int_{- 2}^{- 1} - \left( x^3 - x \right)dx + \int_{- 1}^0 \left( x^3 - x \right)dx + \int_0^1 - \left( x^3 - x \right)dx\]

\[ \Rightarrow I = \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{- 1}^0 + \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_0^1 \]

\[ \Rightarrow I = \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - \left( - \frac{16}{4} + \frac{4}{2} \right) \right] + \left[ 0 - \left( \frac{1}{4} - \frac{1}{2} \right) \right] + \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - 0 \right]\]

\[ \Rightarrow I = \left[ \frac{1}{4} + 2 \right] + \left[ 0 + \frac{1}{4} \right] + \left[ \frac{1}{4} - 0 \right]\]

\[ \Rightarrow I = \frac{11}{4}\]

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Foreign Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×