Advertisements
Advertisements
Question
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Solution
\[\int_0^2 \left| x^2 - 3x + 2 \right| d x\]
\[\text{We know that}, \left| x^2 - 3x + 2 \right| = \begin{cases} - \left( x^2 - 3x + 2 \right)&, &\left( x - 1 \right)\left( x - 2 \right) \leq 0 \text{ or}, 1 \leq x \leq 2\\\left( x^2 - 3x + 2 \right)&, &x^2 - 3x + 2 \geq 0 \text{ or}, x \in \left( - \infty , 1 \right) \cup \left( 2, \infty \right)\end{cases}\]
\[ \therefore I = \int_0^2 \left( x^2 - 3x + 2 \right) d x\]
\[ \Rightarrow I = \int_0^1 \left( x^2 - 3x + 2 \right) d x - \int_1^2 \left( x^2 - 3x + 2 \right) d x\]
\[ \Rightarrow I = \left[ \frac{x^3}{3} - \frac{3 x^2}{2} + 2x \right]_0^1 - \left[ \frac{x^3}{3} - \frac{3 x^2}{2} + 2x \right]_1^2 \]
\[ \Rightarrow I = \frac{1}{3} - \frac{3}{2} + 2 - \left[ \frac{8}{3} - 6 + 4 - \frac{1}{3} + \frac{3}{2} - 2 \right]\]
\[ \Rightarrow I = \frac{1}{3} - \frac{3}{2} + 2 - \frac{8}{3} + 6 - 2 + \frac{1}{3} - \frac{3}{2}\]
\[ \Rightarrow I = 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`