Advertisements
Advertisements
Question
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Solution
`int_0^4(|x|+|x-2|+|x-4|)dx`
`I=int_0^4f(x)dx=int_0^2f(x)dx+int_2^4f(x)dx`
`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`
`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`
`I=int_0^2(6-x)dx+int_2^4(x+2)dx=[6x-x^2/2]_0^2+[x^2/2+2x]_2^4=[12-1]+[8-2+(8-4)]=20`
APPEARS IN
RELATED QUESTIONS
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.