Advertisements
Advertisements
Question
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Solution
`int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`
We know
`int_-a^a "f" ("x")"d" "x" = 0` if f is an odd function i.e i f f (-x) = -f (x)
In the given integral,
`"f" ("x") = (1 - "x"^2) sin "x" cos^2 "x"`
⇒ `"f" (- "x") = (1- (-"x")^2) (sin (-"x")) cos^2 (-"x") = -(1 -"x"^2) sin "x" cos^2 "x"`
⇒ `"f" (-"x") = -"f" ("x")`
So, `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" "dx" = 0`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.