Advertisements
Advertisements
Question
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Solution
Let I = `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Put -cosx + sin x = t .....(1)
Then
(sin x + cos x) dx= dt
As x → 0, t → -1
Also `x = pi/4`, t → 0
Squaring (1) both sides we get
`cos^2x + sin^2x - 2cosxsinx = t^2`
`=> 1 - sin2x = t^2`
`=> sin 2x =1 - t^2`
Substituting these values, we get
`I = int_(-1)^0 dt/(16+9(1-t^2))`
`= int_(-1)^0 dt/(25 - 9t^2)`
`= 1/9 int_(-1)^0 dt/((5/3)^2 - t^2)`
`= 1/9[1/(2a) log |(a+t)/(a-t)|]_(-1)^0` where a = 5/3
`= 1/9 [3/(2(5)) "" log |(5/3+t)/(5/3-t)|]_(-1)^0`
`= 1/9 [3/10 {log 1 - log 1/4}]^(-1)`
`= 3/90 (-log 1/4) = 1/30 log 4`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`