English

If ∫a0 1/(4+x2)dx=π/8 , find the value of a. - Mathematics

Advertisements
Advertisements

Question

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.

Solution

given that `int_0^a1/(4+x^2)dx=pi/8`

We need to find the value of a.

`Let I=int_0^a1/(4+x^2)dx=pi/8`

`Thus,I=1/2(tan^(-1)(x/2))_0^a=pi/8`

`=>1/2 tan^(-1)(a/2)=pi/8`

`=>tan^(-1)(a/2)=pi/4`

`=>a/2=tan(pi/4)`

`=>a/2=1`

`a=2`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×