Advertisements
Advertisements
Question
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Solution
given that `int_0^a1/(4+x^2)dx=pi/8`
We need to find the value of a.
`Let I=int_0^a1/(4+x^2)dx=pi/8`
`Thus,I=1/2(tan^(-1)(x/2))_0^a=pi/8`
`=>1/2 tan^(-1)(a/2)=pi/8`
`=>tan^(-1)(a/2)=pi/4`
`=>a/2=tan(pi/4)`
`=>a/2=1`
`a=2`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.