Advertisements
Advertisements
प्रश्न
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
उत्तर
given that `int_0^a1/(4+x^2)dx=pi/8`
We need to find the value of a.
`Let I=int_0^a1/(4+x^2)dx=pi/8`
`Thus,I=1/2(tan^(-1)(x/2))_0^a=pi/8`
`=>1/2 tan^(-1)(a/2)=pi/8`
`=>tan^(-1)(a/2)=pi/4`
`=>a/2=tan(pi/4)`
`=>a/2=1`
`a=2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int x/(x^2 + 1)"d"x`