हिंदी

Evaluate the integral by using substitution. ∫12(1x-12x2)e2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`

योग

उत्तर

Let `I = int_1^2 e^(2x) (1/x - 1/(2x^2))  dx`

Put 2x = t

⇒ 2dx = dt

When x = 1, t = 2

And when x = 2, t = 4

∴ `I = 1/2 int_2^4 e^t (2/t - (1 xx4)/(2t^2))  dt`

`= 1/2 int_2^4 e^t (2/t - 2/t^2) dt`

`= int_2^4 e^t* (1/t - 1/t^2) dt`

`= int_2^4 e^t *[1/t + d/dt (1/t)] dt`

`= [e^t * 1/t]_2^4 = 1/4 e^4 - e^2/2`

`= e^2/2 (e^2/2 - 1)`

or `(e^2 (e^2 - 2))/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.10 [पृष्ठ ३४०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.10 | Q 8 | पृष्ठ ३४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×