Advertisements
Advertisements
प्रश्न
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
विकल्प
6
0
3
4
उत्तर
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is 6.
Explanation:
Put `x = cos theta`
`dx = cos theta d theta`
`therefore int (x - x^3)^(1/3)/x^4 dx`
`= int ((sin theta - sin^3 theta)^(1/3))/(sin^4 theta) cos theta . d theta`
`= int (sin^(1/3) theta (1 - sin^2 theta)^(1/3))/(sin^4 theta) cos theta . d theta`
`= int (sin^(1/3) theta cos^(2/3) theta . cos theta)/(sin^2 theta sin^2 theta)`
`= int (cos^(5/3) theta)/(sin^(5/3) theta) cosec^2 theta d theta`
`= int cot^(5/3) theta cosec^2 theta d theta`
Again, on substituting `cot theta = t`
`-cosec^2 theta "d" theta = dt`
`int (x - x^3)^(1/3)/x^4 = - int t^(5/3) dt = (-3)/8 t^(8/3)`
`= (-3)/8 (cot theta)^(8/5)`
` = (-3)/8 ((cos theta)/(sin theta))^(8/3)`
`= (-3)/8 ((sqrt(1 - sin^2 theta))/sin theta)^(8/3)`
`= (-3)/8 [(sqrt(1 - x^2))/x]^(8/3) ...[because sin theta = x]`
`therefore int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx = (-3)/8 [((sqrt(1 - x^2))/x)^(8/3)]_(1/3)^1`
`=(-3)/8 [0 - ((sqrt(1 - 1/9))/(1/8))^(8/3)]`
`= 3/8 [((sqrt8)/3)/(1/3)]^(8/3) = 3/8 . (8^(1/2))^(8/3)`
`= 3/8 . 8^(8/6) = 3/8 * 2^(3 xx 8/6)`
`= 3/8 xx 2^4`
`= 3/8 xx 16`
= 6
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
`int_0^1 x^2e^x dx` = ______.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`