Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
उत्तर
Let I = `int "dt"/sqrt(3"t" - 2"t"^2)`
= `int "dt"/sqrt(-2("t"^2 - 3/2 "t"))`
= `1/sqrt(2) int "dt"/sqrt(-("t"^2 - 3/2 "t" + 9/16 - 9/16))` ....[Making perfect square]
= `1/sqrt(2) int "dt"/sqrt(-[("t" - 3/4)^2 - 9/16])`
= `1/sqrt(2) int "dt"/sqrt(9/16 - ("t" - 3/4)^2)`
= `1/sqrt(2) int "dt"/sqrt((3/4)^2 - ("t" - 3/4)^2)`
= `1/sqrt(2) * sin^-1 ("t" - 3/4)/(3/4) + "C"`
= `1/sqrt(2) sin^-1 (4"t" - 3)/3 + "C"`
Hence, I = `1/sqrt(2) sin^-1 ((4"t" - 3)/3) + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is