हिंदी

Evaluate the following: d∫3x-1x2+9dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`

योग

उत्तर

Let I = `int (3x - 1)/sqrt(x^2 + 9) "d"x`

= `int (3x)/sqrt(x^2 + 9) "d"x - int 1/sqrt(x^2 + 9) "d"x`

I = I1 – I2

Now I1 = `int (3x)/sqrt(x^2 + 9) "d"x`

Put x2 + 9 = t

⇒ 2x dx = dt

x dx = – dt

∴ I1 = `3/2 int "dt"/sqrt("t")`

= `3/2 * 2sqrt("t") + "C"_1`

= `3sqrt(x^2 + 9) + "C"_1`

I2 = `int 1/sqrt(x^2 + 9) "d"x`

= `int 1/sqrt(x^2 + (3)^2) "d"x`

= `log|x + sqrt(x^2 + (3)^2)| + "C"_2`  ....`[because int 1/sqrt(x^2 + "a"^2) "d"x = log|x + sqrt(x^2 + "a"^2)| + "C"]`

= `log|x + sqrt(x^2 + 9)| + "C"_2`

∴ I = I1 – I2 

= `3sqrt(x^2 + 9) + "C"_1 - log|x + sqrt(x^2 + 9)| - "C"_2`

= `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + ("C"_1 - "C"_2)`

Hence, I = `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + "C"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 16 | पृष्ठ १६४

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×