हिंदी

∫ ( X 2 + 1 ) ( X 2 + 4 ) ( X 2 + 3 ) ( X 2 − 5 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]
योग

उत्तर

\[I=\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Since,

\[\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left[ \left( x^2 + 3 \right) - 2 \right]\left[ \left( x^2 - 5 \right) + 9 \right]}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
\[ \Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( x^2 + 3 \right)\left( x^2 - 5 \right) + 9\left( x^2 + 3 \right) - 2\left( x^2 - 5 \right) - 18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]

\[\Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - \frac{18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}.............(1)\]

Let 

\[I_1 = \int\frac{1}{( x^2 + 3)( x^2 - 5)}\text{ and }x^2 = y\]

\[\Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{A}{\left( y + 3 \right)} + \frac{B}{\left( y - 5 \right)}\]
\[ = \frac{A\left( y - 5 \right) + B\left( y + 3 \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
\[ \Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{\left( A + B \right)y - \left( 5A + 3B \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]

Comparing coefficients, we get

\[A + B = 0\text{ and }5A + 3B = - 1\]
\[\text{By solving the equations, we get}\]
\[A = - \frac{1}{8}\text{ and }B = \frac{1}{8}\]

From (1), we get

\[I = \int\left[ 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - 18\left( \frac{- 1}{8\left( x^2 + 3 \right)} + \frac{1}{8\left( x^2 - 5 \right)} \right) \right]dx\]

\[\Rightarrow I = \int\left[ 1 + \frac{27}{4\left( x^2 - 5 \right)} + \frac{1}{\left( x^2 + 3 \right)} \right]dx\]
\[ \Rightarrow I = \int1dx + \int\frac{27}{4\left( x^2 - 5 \right)}dx + \int\frac{1}{\left( x^2 + 3 \right)}dx\]
\[ \therefore I = x + \frac{27}{8\sqrt{5}}\ln\left( \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| \right) + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 69 | पृष्ठ १७८

संबंधित प्रश्न

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×