Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Note: Here we are considering} \log\ x\ as \log_e x\]
\[\text{Let I} = \int\frac{\cot x}{\log \sin x}dx\]
\[\text{Putting} \log \sin x = t\]
\[ \Rightarrow \cot x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cot x dx }= dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log }\left| t \right| + C \]
\[ = \text{log }\left| \log \sin x \right| + C \left[ \because t = \log \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`