Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\sin x \cos^2 x}dx\]
\[ = \int\frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x}dx\]
\[ = \int\tan x \sec x + cosec\ x\ dx\]
\[ = \sec x + \text{ln} \left| cosec\ x - \cot x \right| + C\]
\[ = \sec x + \text{ln} \left| \tan\frac{x}{2} \right| + C \left[ \because cosec\ x - \ cot\ x = \frac{1 - \ cosx}{\sin x} = \tan\frac{x}{2} \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)