हिंदी

Evaluate the Following Integral: ∫ X 2 + 1 ( X 2 + 4 ) ( X 2 + 25 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]
योग

उत्तर

\[\text{Let }I = \int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

We express

\[\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 25}\]

\[ \Rightarrow x^2 + 1 = \left( Ax + B \right)\left( x^2 + 25 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]

Equating the coefficients of `x^3 , x^2 , x` and constants, we get

\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 25A + 4C\text{ and }1 = 25B + 4D\]

\[\text{or }A = 0\text{ and }B = - \frac{1}{7}\text{ and }C = 0\text{ and }D = \frac{8}{7}\]

\[ \therefore I = \int\left( \frac{- \frac{1}{7}}{x^2 + 4} + \frac{\frac{8}{7}}{x^2 + 25} \right)dx\]

\[ = - \frac{1}{7}\int\frac{1}{x^2 + 4}dx + \frac{8}{7}\int\frac{1}{x^2 + 25} dx\]

\[ = - \frac{1}{7} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{8}{7} \times \frac{1}{5} \tan^{- 1} \frac{x}{5} + c\]

\[ = - \frac{1}{14} \tan^{- 1} \frac{x}{2} + \frac{8}{35} \tan^{- 1} \frac{x}{5} + c\]

\[\text{Hence, }\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx = - \frac{1}{14} \tan^{- 1} \frac{x}{2} + \frac{8}{35} \tan^{- 1} \frac{x}{5} + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 25 | पृष्ठ १७७

संबंधित प्रश्न

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×