हिंदी

∫ X ( X 2 − a 2 ) ( X 2 − B 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{x dx}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)}\]

Putting `x^2 = t`

\[ \Rightarrow 2x\ dx = dt\]

\[ \Rightarrow x\ dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[\text{Let }\frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A}{t - a^2} + \frac{B}{t - b^2}\]

\[ \Rightarrow \frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A \left( t - b^2 \right) + B \left( t - a^2 \right)}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[ \Rightarrow 1 = A \left( t - b^2 \right) + B \left( t - a^2 \right)\]

Putting `t = b^2`

\[1 = A \times 0 + B \left( b^2 - a^2 \right)\]

\[ \Rightarrow B = \frac{1}{b^2 - a^2}\]

Putting `t = a^2`

\[1 = A \left( a^2 - b^2 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{a^2 - b^2}\]

\[I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)}\int\frac{dt}{t - a^2} + \frac{1}{2 \left( b^2 - a^2 \right)}\int\frac{dt}{t - b^2}\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| t - a^2 \right| + \frac{1}{2 \left( b^2 - a^2 \right)} \log \left| t - b^2 \right| + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| t - a^2 \right| - \log \left| t - b^2 \right| \right] + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| \frac{t - a^2}{t - b^2} \right| \right] + C\]

\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| \frac{x^2 - a^2}{x^2 - b^2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 24 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \sin^2\text{ b x dx}\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×