Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{x dx}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)}\]
Putting `x^2 = t`
\[ \Rightarrow 2x\ dx = dt\]
\[ \Rightarrow x\ dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]
\[\text{Let }\frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A}{t - a^2} + \frac{B}{t - b^2}\]
\[ \Rightarrow \frac{1}{\left( t - a^2 \right) \left( t - b^2 \right)} = \frac{A \left( t - b^2 \right) + B \left( t - a^2 \right)}{\left( t - a^2 \right) \left( t - b^2 \right)}\]
\[ \Rightarrow 1 = A \left( t - b^2 \right) + B \left( t - a^2 \right)\]
Putting `t = b^2`
\[1 = A \times 0 + B \left( b^2 - a^2 \right)\]
\[ \Rightarrow B = \frac{1}{b^2 - a^2}\]
Putting `t = a^2`
\[1 = A \left( a^2 - b^2 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{a^2 - b^2}\]
\[I = \frac{1}{2}\int\frac{dt}{\left( t - a^2 \right) \left( t - b^2 \right)}\]
\[ = \frac{1}{2 \left( a^2 - b^2 \right)}\int\frac{dt}{t - a^2} + \frac{1}{2 \left( b^2 - a^2 \right)}\int\frac{dt}{t - b^2}\]
\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| t - a^2 \right| + \frac{1}{2 \left( b^2 - a^2 \right)} \log \left| t - b^2 \right| + C\]
\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| t - a^2 \right| - \log \left| t - b^2 \right| \right] + C\]
\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \left[ \log \left| \frac{t - a^2}{t - b^2} \right| \right] + C\]
\[ = \frac{1}{2 \left( a^2 - b^2 \right)} \log \left| \frac{x^2 - a^2}{x^2 - b^2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Integrate the following integrals:
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .