Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
योग
उत्तर
\[\text{ Let I} = \int\frac{1}{\sqrt{3 - 2x - x^2}}dx\]
\[ = \int\frac{1}{\sqrt{3 - \left( x^2 + 2x + 1 - 1 \right)}}dx\]
\[ = \int\frac{1}{\sqrt{4 - \left( x + 1 \right)^2}}dx\]
\[\text{ Putting} \left( x + 1 \right) = t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{dt}{\sqrt{2^2 - t^2}}\]
\[ = \sin^{- 1} \left( \frac{t}{2} \right) + C .................\left[ \because \int \frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \sin^{- 1} \left( \frac{x + 1}{2} \right) + C .....................\left[ \because t = \left( x + 1 \right) \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]