हिंदी

∫ 1 √ 3 − 2 X − X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
योग

उत्तर

\[\text{ Let I} = \int\frac{1}{\sqrt{3 - 2x - x^2}}dx\]

\[ = \int\frac{1}{\sqrt{3 - \left( x^2 + 2x + 1 - 1 \right)}}dx\]

\[ = \int\frac{1}{\sqrt{4 - \left( x + 1 \right)^2}}dx\]

\[\text{ Putting} \left( x + 1 \right) = t\]

\[ \Rightarrow dx = dt\]

\[ \therefore I = \int\frac{dt}{\sqrt{2^2 - t^2}}\]

\[ = \sin^{- 1} \left( \frac{t}{2} \right) + C .................\left[ \because \int \frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]

\[ = \sin^{- 1} \left( \frac{x + 1}{2} \right) + C .....................\left[ \because t = \left( x + 1 \right) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 50 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×