Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{1}{4 \sin^2 x + 5 \cos^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int\frac{\sec^2 x}{4 \tan^2 x + 5}\text{ dx }\]
\[\text{ Let tan } x = t\]
\[ \Rightarrow \sec^2\text{ x }dx = dt\]
\[ \therefore I = \int \frac{dt}{4 t^2 + 5}\]
\[ = \frac{1}{4}\int \frac{dt}{t^2 + \frac{5}{4}}\]
\[ = \frac{1}{4}\int\frac{dt}{t^2 + \left( \frac{\sqrt{5}}{2} \right)^2}\]
\[ = \frac{1}{4} \times \frac{2}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{t}{\sqrt{5}} \times 2 \right) + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ tan }^{- 1} \left( \frac{2 \tan x}{\sqrt{5}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
Find: `int (3x +5)/(x^2+3x-18)dx.`