Advertisements
Advertisements
प्रश्न
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
योग
उत्तर
` ∫ {x dx}/{x^4 - x^2 + 1}`
\[\text{ Let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/{x^4 - x^2 + 1}`
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 - 1}{\sqrt{3}} \right) + C\]
\[\text{ Let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ {x dx}/{x^4 - x^2 + 1}`
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 - 1}{\sqrt{3}} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int \sec^6 x\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]