हिंदी

∫ 4 X 4 + 3 ( X 2 + 2 ) ( X 2 + 3 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{\left( 4 x^4 + 3 \right)dx}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)}\]
\[\text{Let }\frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{A}{t + 2} + \frac{B}{t + 3} + \frac{C}{t + 4}\]
\[ \Rightarrow \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{A\left( t + 3 \right) \left( t + 4 \right) + B\left( t + 2 \right) \left( t + 4 \right) + C\left( t + 2 \right) \left( t + 3 \right)}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)}\]
\[ \Rightarrow 4 t^2 + 3 = A\left( t + 3 \right) \left( t + 4 \right) + B\left( t + 2 \right) \left( t + 4 \right) + C\left( t + 2 \right) \left( t + 3 \right)\]
\[\text{Putting t + 3 = 0}\]
\[ \Rightarrow t = - 3\]
\[ \therefore 4 \times \left( - 3 \right)^2 + 3 = B\left( - 3 + 2 \right) \left( - 3 + 4 \right)\]
\[ \Rightarrow 39 = B\left( - 1 \right)\]
\[ \Rightarrow B = - 39\]
\[\text{Putting t + 2 = 0}\]
\[ \Rightarrow t = - 2\]
\[ \therefore 4 \left( - 2 \right)^2 + 3 = A\left( - 2 + 3 \right) \left( - 2 + 4 \right)\]
\[ \Rightarrow 19 = A \times 1 \times 2\]
\[ \Rightarrow A = \frac{19}{2}\]
\[\text{Let t + 4 = 0}\]
\[ \Rightarrow t = - 4\]
\[ \therefore 4 \times \left( - 4 \right)^2 + 3 = C\left( - 4 + 2 \right) \left( - 4 + 3 \right)\]
\[ \Rightarrow 67 = C\left( - 2 \right) \left( - 1 \right)\]
\[ \Rightarrow C = \frac{67}{2}\]
\[ \therefore \frac{4 t^2 + 3}{\left( t + 2 \right) \left( t + 3 \right) \left( t + 4 \right)} = \frac{19}{2\left( t + 2 \right)} - \frac{39}{t + 3} + \frac{67}{2\left( t + 4 \right)}\]
\[ \Rightarrow \frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{19}{2\left( x^2 + 2 \right)} - \frac{39}{x^2 + 3} + \frac{67}{2\left( x^2 + 4 \right)}\]
\[ \therefore I = \frac{19}{2}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - 39\int\frac{dx}{x^2 + \left( \sqrt{3} \right)^2} - \frac{67}{2}\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{19}{2} \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{67}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{19}{2\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{39}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{67}{4} \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 64 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x e^x \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×