Advertisements
Advertisements
प्रश्न
उत्तर
` ∫ {x dx }/ {x^4 + 2 x^2 +3} `
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
Now, ` ∫ {x dx }/ {x^4 + 2 x^2 +3} `
\[ = \frac{1}{2}\int\frac{dt}{t^2 + 2t + 3}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 + 2t + 1 + 2}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t + 1 \right)^2 + \left( \sqrt{2} \right)^2} \]
\[ = \frac{1}{2} \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t + 1}{\sqrt{2}} \right) + C \left[ \because \int\frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{1}{2\sqrt{2}} \tan^{- 1} \left( \frac{x^2 + 1}{\sqrt{2}} \right) + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int {cosec}^4 2x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]