Advertisements
Advertisements
प्रश्न
\[\int x^3 \cos x^4 dx\]
योग
उत्तर
\[\int x^3 \cdot \cos \left( x^4 \right) dx\]
\[\text{Let x}^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[Now, \int x^3 \cdot \cos \left( x^4 \right) dx\]
\[ = \frac{1}{4}\int\cos \left( t \right) dt\]
\[ = \frac{1}{4}\left[ \text{sin} \left( t \right) \right] + C\]
\[ = \frac{1}{4}\left[ \text{sin x}^4 \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
` ∫ tan^3 x sec^2 x dx `
` ∫ tan^5 x dx `
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`