Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{Let I }= \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[ \text{Let x} = \cos2\theta\]
\[ \text{On differentiating both sides, we get}\
`dx = - 2 sin2θ d θ `
`∴ I = -∫ cos { 2 cot^{- 1} \sqrt{{1 + cos 2θ }/{1 - \cos2 θ }}} 2 sin2θ d θ `
` = - 2 ∫ cos { 2 cot^{- 1} \sqrt{{2cos ^2θ }/{2 \sin^2 θ }}} 2 sin^2θ d θ `
` - 2 ∫ cos { 2 cot^{- 1} (cot θ )} sin2θ d θ `
` - 2 ∫ cos 2θ sin2θ d θ `
` - 2 ∫ sin4θ d θ `
\[ = \frac{\cos4\theta}{4} + c_1 \]
\[ = \frac{1}{4}\left( 2 \cos^2 2\theta - 1 \right) + c_1 \]
\[ = \frac{1}{2} x^2 - \frac{1}{4} + c_1 \]
\[ = \frac{1}{2} x^2 + c, \text{where c} = - \frac{1}{4} + c_1 \]
\[Hence, \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx = \frac{1}{2} x^2 + c\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
Evaluate the following integral:
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]