हिंदी

Evaluate the Following Integrals: ∫ Cos { 2 Cot − 1 √ 1 + X 1 − X } D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
योग

उत्तर

\[\text{Let I }= \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[ \text{Let x} = \cos2\theta\]

\[ \text{On differentiating both sides, we get}\

`dx = - 2 sin2θ      d θ  `

`∴ I = -∫ cos { 2 cot^{- 1} \sqrt{{1 + cos 2θ  }/{1 - \cos2 θ }}}  2 sin2θ   d θ  `

`  = -  2 ∫ cos { 2 cot^{- 1} \sqrt{{2cos ^2θ  }/{2  \sin^2 θ }}}  2 sin^2θ   d θ  `

` - 2      ∫  cos { 2 cot^{- 1} (cot θ )}  sin2θ   d θ  `

` - 2      ∫  cos 2θ   sin2θ   d θ  `

` - 2      ∫     sin4θ   d θ  `

\[ = \frac{\cos4\theta}{4} + c_1 \]

\[ = \frac{1}{4}\left( 2 \cos^2 2\theta - 1 \right) + c_1 \]

\[ = \frac{1}{2} x^2 - \frac{1}{4} + c_1 \]

\[ = \frac{1}{2} x^2 + c, \text{where c} = - \frac{1}{4} + c_1 \]

\[Hence, \int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx = \frac{1}{2} x^2 + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.13 | Q 3 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×