हिंदी

∫ Log X X N D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log x}{x^n}\text{  dx }\]
योग

उत्तर

`  ∫   1/x^n   log  x   dx `
`  " Taking  log x as the first function and "{1}/ {x^n}"  as the second function  " ` 
\[ = \log x\int\frac{1}{x^n}dx - \int\left( \frac{d}{dx}\log x\int\frac{1}{x^n}dx \right)dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \int\frac{1}{x}\left( \frac{x^{- n + 1}}{- n + 1} \right)dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \int\frac{x^{- n}}{- n + 1}dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \frac{x^{- n + 1}}{\left( - n + 1 \right)^2} + C\]
\[ = \log x\left( \frac{x^{1 - n}}{1 - n} \right) - \frac{x^{1 - n}}{\left( 1 - n \right)^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 15 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×