हिंदी

∫ X 3 − 3 X 2 + 5 X − 7 + X 2 a X 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
योग

उत्तर

\[\int\left( \frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} \right)dx\]
\[ = \int\left( \frac{x^3}{2 x^2} - \frac{3 x^2}{2 x^2} + \frac{5x}{2 x^2} - \frac{7}{2 x^2} + \frac{x^2 a^x}{2 x^2} \right)dx\]
\[ = \int\left( \frac{x}{2} - \frac{3}{2} + \frac{5}{2x} - \frac{7}{2} x^{- 2} + \frac{a^x}{2} \right)dx\]
\[ = \frac{1}{2}\ \text{∫  x dx} - \frac{3}{2}\  ∫ dx + \frac{5}{2} ∫ \frac{dx}{x} - \frac{7}{2}\int x^{- 2} dx + \frac{1}{2}\int a^x dx\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} \right] - \frac{3}{2}x + \frac{5}{2}\ln \left| x \right| - \frac{7}{2} \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \frac{1}{2}\left[ \frac{a^x}{\ln a} \right] + C\]
\[ = \frac{x^2}{4} - \frac{3}{2}x + \frac{5}{2}\ln \left| x \right| + \frac{7}{2x} + \frac{a^x}{2 \ln a} + C\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} - 3x + 5 \ln \left| x \right| + \frac{7}{x} + \frac{a^x}{\ln a} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 41 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×