हिंदी

∫ 1 2 + Cos X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 + \cos x} \text{ dx }\]

योग

उत्तर

\[\text{ Let I } = \int\frac{1}{2 + \cos x}dx\]
\[\text{ Putting cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{1}{2 + \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{2 \left( 1 + \tan^2 \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right)}dx\]
\[ = \int\frac{\sec^2 \left( \frac{x}{2} \right)}{2 + 2 \tan^2 \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right)}dx\]
\[ = \frac{\sec^2 \left( \frac{x}{2} \right)}{3 + \tan^2 \left( \frac{x}{2} \right)}dx\]
\[\text{ Putting tan } \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec }^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) dx = \text{ 2  dt }\]
\[ \therefore I = \int\frac{2}{3 + t^2} \text{ dt}\]
\[ = 2\int\frac{1}{t^2 + \left( \sqrt{3} \right)^2}dt\]
\[ = \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C \]
\[ = \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{\tan \frac{x}{2}}{\sqrt{3}} \right) + C............ \left[ \because t = \tan \frac{x}{2} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 73 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^6 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×