हिंदी

∫ Cos 2 X √ Sin 2 2 X + 8 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
योग

उत्तर

\[\int\frac{\cos \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}}\]
\[\text{ let } \text{ sin } \left( 2x \right) = t\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \times 2 \cdot dx = dt\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \cdot dx = \frac{dt}{2}\]
\[Now, \int\frac{\text{ cos } \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}} \]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t^2 + \left( 2\sqrt{2} \right)^2}}\]
\[ = \frac{1}{2}\text{ log }\left| t + \sqrt{t^2 + 8} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \text{ sin }\left( 2x \right) + \sqrt{\text{ sin }^2 \left(\text{  2x }\right) + 8} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 9 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×