Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\left( \frac{x - 1}{\sqrt{x^2 + 1}} \right) dx\]
` = ∫ {x dx}/\sqrt{x^2 + 1} - ∫ dx / \sqrt{x^2 +1 }`
\[\text{ Putting x}^2 + 1 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
\[\text{ Then }, \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \sqrt{t} - \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{x^2 + 1} - \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
Evaluate the following integral:
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`