Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\left( \frac{x - 1}{\sqrt{x^2 + 1}} \right) dx\]
` = ∫ {x dx}/\sqrt{x^2 + 1} - ∫ dx / \sqrt{x^2 +1 }`
\[\text{ Putting x}^2 + 1 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
\[\text{ Then }, \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \sqrt{t} - \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{x^2 + 1} - \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
Evaluate the following integral:
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]