मराठी

∫ X − 1 √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\left( \frac{x - 1}{\sqrt{x^2 + 1}} \right) dx\]
`  =  ∫   {x    dx}/\sqrt{x^2 + 1} -   ∫   dx / \sqrt{x^2 +1 }`
\[\text{ Putting x}^2 + 1 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
\[\text{ Then }, \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] - \int\frac{dx}{\sqrt{x^2 + 1^2}}\]
\[ = \sqrt{t} - \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{x^2 + 1} - \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 9 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×