मराठी

∫ 3 + 4 X − X 2 ( X + 2 ) ( X − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
बेरीज

उत्तर

\[\int\left( \frac{3 + 4x - x^2}{x^2 - x + 2x - 2} \right)dx\]
\[ = \int\left( \frac{- x^2 + 4x + 3}{x^2 + x - 2} \right)dx\]
\[\frac{- x^2 + 4x + 3}{x^2 + x - 2} = - 1 + \frac{5x + 1}{x^2 + x - 2} .............(1)\]
\[ \therefore \frac{5x + 1}{x^2 + x - 2} = \frac{5x + 1}{x^2 + 2x - x - 2}\]
\[ = \frac{5x + 1}{x\left( x + 2 \right) - 1\left( x + 2 \right)}\]
\[\text{Let }\frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 2}\]
\[ \Rightarrow \frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{A\left( x + 2 \right) + B\left( x - 1 \right)}{\left( x - 1 \right)\left( x + 2 \right)}\]
\[ \Rightarrow 5x + 1 = A\left( x + 2 \right) + B\left( x - 1 \right) ..........(2)\]
\[\text{Putting }x + 2 = 0\text{ or }x = - 2\text{ in eq. (2)}\]
\[ \Rightarrow 5x - 2 + 1 = A \times 0 + B\left( - 2 - 1 \right)\]
\[ \Rightarrow B = 3\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (2)}\]
\[ \Rightarrow 5 \times 1 + 1 = A\left( 3 \right) + B \times 0\]
\[ \Rightarrow A = 2\]
\[ \therefore \frac{5x + 1}{\left( x - 1 \right)\left( x + 2 \right)} = \frac{2}{x - 1} + \frac{3}{x + 2} ............(3)\]
From (1) and (3)
\[\frac{- x^2 + 4x + 3}{x^2 + x - 2} = - 1 + \frac{2}{x - 1} + \frac{3}{x + 2}\]
\[ \Rightarrow \int\frac{- x^2 + 4x + 3}{x^2 + x - 2}dx = \int - 1 dx + \int\frac{2}{x - 1}dx + \int\frac{3}{x + 2} dx\]
\[ = - x + 2 \ln\left( x - 1 \right) + 3 \ln\left( x + 2 \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 4 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×