Advertisements
Advertisements
प्रश्न
\[\int\left( x + 1 \right) \text{ log x dx }\]
बेरीज
उत्तर
\[\int \left( x + 1 \right)_{II} . \log_1 \text{ x dx }\]
\[ = \log x\int\left( x + 1 \right)dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\left( x + 1 \right)dx \right\}dx\]
\[ = \log x\left[ \frac{x^2}{2} + x \right] - \int \frac{1}{x}\left( \frac{x^2}{2} + x \right)dx\]
\[ = \log x\left( \frac{x^2}{2} + x \right) - \int \left( \frac{x}{2} + 1 \right)dx\]
\[ = \log x\left( \frac{x^2}{2} + x \right) - \left( \frac{x^2}{4} + x \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{\cos^7 x}{\sin x} dx\]