मराठी

∫ 1 √ X + √ X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]

बेरीज

उत्तर

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}}dx\]
\[\text{Rationalising the denominator}, \]
\[ = \int\frac{\left( \sqrt{x + 1} - \sqrt{x} \right)}{\left( \sqrt{x + 1} + \sqrt{x} \right) \left( \sqrt{x + 1} - \sqrt{x} \right)}dx\]
\[ = \int\frac{\left( \sqrt{x + 1} - \sqrt{x} \right)}{x + 1 - x}dx\]
\[ = \int\left( \sqrt{x + 1} - \sqrt{x} \right) dx\]
\[ = \int\left[ \left( x + 1 \right)^\frac{1}{2} - x^\frac{1}{2} \right]dx\]
\[ = \frac{\left( x + 1 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} \left( x + 1 \right)^\frac{3}{2} - \frac{2}{3} x^\frac{3}{2} + C\]
\[ = \frac{2}{3}\left[ \left( x + 1 \right)^\frac{3}{2} - x^\frac{3}{2} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 1 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×