Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \text{ log } \left( x + 1 \right)dx\]
\[ = \int1 . \log \left( x + 1 \right)dx\]
\[\text{Taking log} \left( x + 1 \right) \text{ as the first function and 1 as the second function} . \]
\[ = \text{ log }\left( x + 1 \right)\int \text{ 1 dx } - \int\left[ \frac{d}{dx}\left\{ \log\left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ = x \text{ log} \left( x + 1 \right) - \int\frac{x}{x + 1}dx\]
\[ = x \text{ log }\left( x + 1 \right) - \int\frac{x + 1}{x + 1} - \frac{1}{x + 1}dx\]
\[ = x \text{ log }\left( x + 1 \right) - x + \text{ log } \left| x + 1 \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]