मराठी

∫ X 2 + 3 X + 1 ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[\text{Let x + 1 }= t\]
\[ \Rightarrow x = t - 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[ \Rightarrow dx = dt\]
\[Now, \int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[ = \int\left[ \frac{\left( t - 1 \right)^2 + 3\left( t - 1 \right) + 1}{t^2} \right]dt\]
\[ = \int\left( \frac{t^2 - 2t + 1 + 3t - 3 + 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 1}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - t^{- 2} \right) dt\]
\[ = t + \text{ log }\left| t \right| - \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = t + \text{ log }\left| t \right| + \frac{1}{t} + C\]
\[ = x + 1 + \text{ log     }\left| x + 1 \right| + \frac{1}{x + 1} + C\]
\[\text{ Let 1 + C  }= C'\]
\[ = x + \text{ log }\left| x + 1 \right| + \frac{1}{x + 1} + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 6 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×