Advertisements
Advertisements
प्रश्न
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
बेरीज
उत्तर
\[\int\sqrt{\frac{1 + \cos2x}{1 - \cos2x}}dx\]
\[ = \int\sqrt{\frac{2 \cos^2 x}{2 \sin^2 x}}dx\]
\[ = \int\ \text{cot x dx}\]
\[ = \text{ln} \left| \text{sin x} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x \cos x\ dx\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \sin^4 2x\ dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .