मराठी

∫ Sin 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^5 x\ dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int \sin^5 x \text{ dx }\]
\[ = \int \sin^4 x \cdot \text{ sin x dx}\]
\[ = \int \left( \sin^2 x \right)^2 \text{ sin x dx}\]
\[ = \int \left( 1 - \cos^2 x \right)^2 \text{ sin x dx}\]
\[ = \int\left( \cos^4 x - 2 \cos^2 x + 1 \right) \text{ sin x dx}\]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \text{ sin x dx} = dt\]
\[ \Rightarrow \text{ sin x dx} = - dt\]
\[ \therefore I = - \int\left( t^4 - 2 t^2 + 1 \right) dt\]
\[ = - \int t^4 dt + 2\int t^2 dt - \int dt\]
\[ = \frac{- t^5}{5} + \frac{2 t^3}{3} - t + C\]
\[ = \frac{- \cos^5 x}{5} + \frac{2}{3} \text{ cos}^3 x - \cos x + C .......\left[ \because t = \cos x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 38 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×