Advertisements
Advertisements
Question
\[\int \sin^5 x\ dx\]
Sum
Solution
\[\text{ Let I }= \int \sin^5 x \text{ dx }\]
\[ = \int \sin^4 x \cdot \text{ sin x dx}\]
\[ = \int \left( \sin^2 x \right)^2 \text{ sin x dx}\]
\[ = \int \left( 1 - \cos^2 x \right)^2 \text{ sin x dx}\]
\[ = \int\left( \cos^4 x - 2 \cos^2 x + 1 \right) \text{ sin x dx}\]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \text{ sin x dx} = dt\]
\[ \Rightarrow \text{ sin x dx} = - dt\]
\[ \therefore I = - \int\left( t^4 - 2 t^2 + 1 \right) dt\]
\[ = - \int t^4 dt + 2\int t^2 dt - \int dt\]
\[ = \frac{- t^5}{5} + \frac{2 t^3}{3} - t + C\]
\[ = \frac{- \cos^5 x}{5} + \frac{2}{3} \text{ cos}^3 x - \cos x + C .......\left[ \because t = \cos x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]