English

∫ Cos − 1 ( 4 X 3 − 3 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
Sum

Solution

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right)\text{ dx }\]

\[\text{ Let x } = \cos \theta \]

\[ \Rightarrow \theta = \cos^{- 1} x\]

\[\text{and}\ dx = - \sin \text{ θ  dθ }\]

\[ \therefore \int \cos^{- 1} \left( 4 x^3 - 3x \right)dx = \int \cos^{- 1} \left( 4 \cos^3 \theta - 3 \cos \theta \right) . \left( - \sin \theta \right)d\theta\]

\[ = \int \cos^{- 1} \left( \text{ cos 3 }\theta \right) . \left( - \sin \theta \right)d\theta \left( \because \text{ cos } \text{ 3 θ }= 4 \cos^3 \theta - 3 \cos \theta \right)\]

\[ = - 3 \int \theta_I \sin_{II} \text{ θ  dθ }\]

\[ = \theta\int\sin \text{ θ  dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{ θ  dθ }\right\}d\theta\]

\[ = 3 \left[ \theta \left( - \cos \theta \right) - \int1 . \left( - \cos \theta \right)d\theta \right]\]

\[ = 3\theta \cos \theta - 3 \sin \theta + C \]

\[ = 3 \cos^{- 1} x . x - 3\sqrt{1 - x^2} + C \left( \because x = \cos \theta \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 41 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×